Browsing by Author "Hlangothi, S. P."
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemMajor challenges for commercialization of perovskite solar cells: A critical review(ELSEVIER, 2025-01-09) Seyisi, T.; Fouda-Mbanga, B.G.; Mnyango, J.I.; Nthwane, Y. B.; Nyoni, B.; Mhlanga, S.; Hlangothi, S. P.; Tywabi-Ngeva, Z.Global electricity consumption increases rapidly creating strain on the grid. In contrast, the primary sources of electricity are fossil fuels such as gas, coal, and oil which are non-renewable and limited, resulting in energy crises. Therefore, the global energy crisis remains a big challenge that requires renewable and sustainable solutions. Perovskite solar cell is a type of solar cell that uses a perovskite-structured compound, usually a hybrid organic-inorganic lead or tin halide-based material as the light-harvesting active layer. In the development of perovskite solar cells spanning 2009–2024, exceptional power conversion efficiencies ranging from 3.8 % to 26.1 % have been reported. As such, perovskite solar cells hold significant promise as the next generation of affordable and effective photovoltaic solar cell technology. Moreover, perovskite solar cells have recently gained popularity and presented an excellent commercial opportunity because they are made from readily available and inexpensive raw materials. However, the commercial production and utilization of perovskite solar cells remains immature. It has been shown that perovskite solar cells containing titanium dioxide as the electron transport layer exhibit poor stability, degrading quickly under prolonged exposure to sunlight and humid conditions. These instability concerns are the major drawbacks that threaten efforts that are directed at the commercialization of perovskite solar cells. As such, there are significant efforts to improve the development of scalable fabrication of perovskite solar cells and the establishment of industrial production lines. The main objective of this review is to outline the primary obstacles that hinder the commercialization of perovskite solar cells. Firstly, a brief discussion on the principles of perovskite solar cells is done. Secondly, challenges associated with the commercialization of erovskite solar cells and counterstrategies are discussed. The review concludes by looking at perspectives and prospects highlighting the importance of continued research and collaboration in overcoming challenges to commercialization. We hope that this review will provide useful insights for future research on improving the stability of cutting-edge perovskite devices as they approach commercialization.