Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. NuSpace
  2. Browse by Author

Browsing by Author "Motsa, S."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Numerical Analysis of Couple Stress Nanofluid in Temperature Dependent Viscosity and Thermal Conductivity
    (Springer Nature, 2021-02-24) Dhlamini, M.; Mondal, H.; Sibanda, P.; Motsa, S.
    This communication reports on an innovative study of two-dimensional couple stress fluid 3 with effect of viscosity and conductivity. We proposed a new model based on temperature dependent variable thermal conductivity on kinetic theory. Our model assumes that thermal conductivity is a decreasing function of temperature rather than an increasing function. The effect of the three key parameters, viscosity, thermal conductivity and couple stress parameter are analyzed. The coupled non-linear system is further validated numerically using the spectral quasilinearization method. The method is found to be accurate and convergent. Increasing the temperature dependent parameter for viscosity is shown to reduce the heat mass transfer rates at the surface. Increasing thermal conductivity and the couple stress parameter increased the heat mass transfer rates on the boundary surface.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Send Feedback