Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. NuSpace
  2. Browse by Author

Browsing by Author "Ndiripo, A."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Improving temperature gradient interaction chromatography of polyolefins by simultaneous use of different stationary phases
    (Elsevier, 2021-07-14) Ndiripo, A.; Ndlovu, P.Z.; Albrecht, A.; Pasch, H.,
    Temperature gradient interaction chromatography (TGIC) at high temperatures is a powerful method for the chemical composition separation of polyolefins. TGIC is a two-step process where the sample is crystallized on the stationary phase at low temperature followed by the elution of the sample components using a temperature gradient towards high temperatures. For TGIC typically a porous graphitic carbon (PGC) stationary phase is used. The separation mechanism is based on crystallization and adsorption/desorption phenomena and it has been shown that co-crystallization and co-adsorption may affect the separation. The present study reports on the simultaneous use of a non-adsorptive and an adsorptive stationary phase (column) in series to utilize both crystallization and adsorption for improved separation in TGIC. A silica column is used as the non-adsorptive support to allow for the crystallization of the polyolefin sample in the absence of an adsorptive force followed by the typical PGC column for adsorption/desorption. Accordingly, the loci of crystallization and adsorption/desorption are well separated from each other and can be adjusted independently. This novel column setup allows the sample to be introduced slowly onto the second (adsorptive) column eliminating possible co-adsorption and poor selectivity. Low molar mass polyethylene comprising of oligomers with approximately C30single bondC130 was used to illustrate the importance of a non-adsorptive column for improved separation. Utilizing a non-adsorptive silica column allows for higher dynamic flow rates during crystallization, which improves separation. Shorter adsorptive columns are found to be more efficient in this experimental protocol as compared to standard TGIC experiments. Smaller PGC column sizes result in reduced longitudinal and Eddy diffusion and, hence, higher resolution of low and high molar mass polyolefins.
  • No Thumbnail Available
    Item
    Multidimensional analytical protocols for the fractionation and analysis of complex polyolefins
    (Wiley Online Library, 2021-05-03) Pasch, H.; Ndiripo, A.; Bungu, P.S.E
    Although produced from simple monomers that contain just carbon and hydrogen, polyolefin have complex molecular structures that are characterized by distributions in molar mass, chemical composition, and branching. Accordingly, a variety of advanced analytical techniques are needed for the comprehensive characterization of the molecular heterogeneity of polyolefins. These include different fractionation, spectroscopic, and thermal analysis methods. Very frequently, method couplings such as two‐dimensional liquid chromatography or the coupling of crystallization‐ and column‐based techniques are required. This review presents the current state of the art in multidimensional analysis of complex polyolefins. It discusses methods for bulk analysis as well as different analytical and preparative fractionation protocols. For different types of polyolefins it is shown that a preparative fractionation according to chemical composition/branching or molar mass helps to reduce the molecular complexity of the sample. Sample libraries can be obtained that may have narrow distributions regarding one molecular parameter. A detailed investigation of such library samples regarding other (broadly distributed) molecular parameters helps to fully explore the molecular heterogeneity of a complex sample.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Send Feedback