Browsing by Author "Otomo, P.V."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemEfectiveness of mycofltration for removal of contaminants from water: a systematic review protocol(Springer Nature, 2021-07-28) Mnkandla, S.M.; Otomo, P.V.Background Mycofiltration is an environment friendly technology which involves the treatment of contaminated water by passing it through a network of fungal mycelium. This technology has gained momentum over the years, and the systematic review chartered in this protocol will compile and synthesise literature on mycofiltration studies, paying special attention to the types and levels of contaminants removed. The systematic review should provide insight into the removal efficiency of mycofiltration by synthesising the mycofiltration knowledge base. Moreover, the proposed contribution will inform further research and provide comprehensive information to relevant stakeholders, such as municipalities, which might be in need of interventions for alleviating wastewater-related pollution in surrounding water bodies. Methods This systematic review protocol is based on the question, “What is the effectiveness of mycofiltration for removal of contaminants from water?” A thorough search of peer reviewed journal articles and grey literature sources will be conducted on academic journal databases, websites, specialist sources such as environmental organisations as well social and networking sources. A supplemental search will also be performed by forward and backward citation tracing. A two-stage screening process at title, abstract and full text level, will be conducted, against predefined inclusion criteria. Studies that meet inclusion criteria will be subjected to quality assessment. Data will be extracted and compiled into a narrative synthesis and summarised into tables and figures. Meta-analysis will be performed where sufficient evidence-base allows.
- ItemMycofltration of Aqueous Iron (III) and Imidacloprid Solutions, and the Efects of the Filtrates on Selected Biomarkers of the Freshwater Snail Helisoma duryi(Archives of Environmental Contamination and Toxicology, 2024-02-08) Mnkandla, S.M.; Mosoabisane, M.F.T.; Basopo, N.; Otomo, P.V.To alleviate the burden of water contamination, a newly developed form of bioremediation known as mycofiltration can be employed. Mycofiltration is an environment-friendly technology involving the treatment of contaminated water by passing it through a network of saprophytic fungal mycelium. A mycofilter made of Pleurotus ostreatus was used for the removal of iron (III) and imidacloprid from aqueous solutions. Batch mycofiltration, at a dosage of 1 g of mycofilter per 50 mL, was performed on iron (III) solutions of different concentrations (0.99, 10.7, 22.9, and 27.72 mg/L) and pH (3.3, 7 and 11). For column mycofiltration, the mycofilter was packed into pyrex columns (3.3 × 15 cm) to desired bed heights. Iron (III) and imidacloprid solutions of 18.99 mg/L and 234.70 ng/L, respectively, were filtered at a constant flow rate. Thereafter, Helisoma duryi snails were exposed for 96 h to the respective filtrates, and their catalase and acetylcholinesterase activities were assessed. Batch mycofiltration showed iron (III) removal rates as high as 85%. Column mycofiltration showed removal rates of 94 and 31% for iron (III) and imidacloprid, respectively. Catalase activity was significantly reduced (p < 0.05) in the snails exposed to iron (III) or imidacloprid filtrates, compared to the snails exposed to the non-mycofiltered media. A significantly higher acetylcholinesterase activity was induced by iron (III) filtrates in comparison with the non-mycofiltered media (p < 0.05). There were no significant differences in acetylcholinesterase activity (p > 0.05) in the snails exposed to mycofiltered and non-mycofiltered imidacloprid media. Mycofilter characterisation using Fourier Transform Infrared Spectrophotometry revealed significant changes in transmittance intensity in the mycofilters used for the iron (III) vs the ones used for the imidacloprid solutions. Mycofiltration was found to improve water quality although iron (III) was removed more effectively than imidacloprid.