Azimuthally SymmetricTheory of Gravitation (I) On the Perihelion Precession of Planetary Orbits
Loading...
Date
2009-12-15
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
arXiv
Abstract
From a purely none-general relativistic standpoint,we solve the empty space Poisson equation(∇2Φ=0) for an azimuthally symmetric setting, i.e., for a spinning gravitational system like the Sun. We seek the general solution of the formΦ = Φ(r,θ). This general solution is constrained such
that in the zeroth order approximation it reduces to Newton’swell known inverse
square law of gravitation. For this general solution, it is seen that it has implications on the orbits of test bodies in the gravitational field of this spinning body. We show that to second order approximation,this azimuthally symmetric gravitational field is capable of explaining at least two things (1) the observed perihelion shift of solar planets (2) that the mean Earth-Sun distance must be increasing–this resonates with the observations of two independent groups of
astronomers(Krasinsky&Brumberg 2004; Standish 2005) who have measured that the mean Earth-Sun distance must be increasing at a rate of about7.0±0.2m/cy (Standish 2005) to 15.0±0.3m/cy (Krasinsky&Brumberg 2004).In-principle,we are able to explain this result as a consequence of loss of orbit alangular momentum–this loss of orbit alangular momentum is a direct prediction of the theory.Further,we show that the theory is able to explain at a satisfactory level
the observed secular increase Earth Year (1.70±0.05ms/yr; Miuraet al. 2009).
Furthermore, we show that the theory makes a significant and testable prediction to the effect that the period of the solar spin must be decreasing at a rate of at least8.00±2.00s/cy.
Description
Keywords
Astronomical unit, Azimuthal symmetry, Orbit, Perihelion shift, Solar spin