Optimisation of Self Organising Maps Using the Bat Algorithm

dc.contributor.authorMzelikahle, Kernan
dc.contributor.authorMapuma, Dunstan Junior
dc.contributor.authorHlatywayo, Dumisani J.
dc.contributor.authorTrimble, John
dc.contributor.authorHlatywayo, Dumisani J.
dc.date.accessioned2018-04-09T14:30:33Z
dc.date.accessioned2023-06-26T13:07:15Z
dc.date.available2018-04-09T14:30:33Z
dc.date.available2023-06-26T13:07:15Z
dc.date.issued2017
dc.descriptionJournal Article.en_US
dc.description.abstractSelf Organising Maps are among the most widely used unsupervised neural network approaches to clustering. They have been shown to be efficient in handling large and high dimensional data. The Bat Algorithm is a swarm intelligence based, meta- heuristic optimisation algorithm. It is based on the echolocation behaviour of micro-bats with varying emission pulse rates and loudness. This paper gives a novel hybrid optimisation method which is here called the Bat Optimised Self-Organising Map. It combines the basic Self Organising Map learning algorithm with the Bat Algorithm. In this optimisation technique, the Bat Algorithm is used to initialise the weight vectors for a Self Organising Map to a near global optimum prior to the competition.en_US
dc.identifier.citationMzelikahle, K. et al. 2017.Optimisation of Self Organising Maps Using the Bat Algorithm. American Journal of Information Science and Computer Engineering 3(6).en_US
dc.identifier.issn2381-7496
dc.identifier.urihttp://196.220.97.103:4000/handle/123456789/885
dc.language.isoenen_US
dc.subjectSelf Organising Mapsen_US
dc.subjectBat Algorithmen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectUnsupervised Learningen_US
dc.titleOptimisation of Self Organising Maps Using the Bat Algorithmen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Optimisation of Self Organising Maps Using .pdf
Size:
939.9 KB
Format:
Adobe Portable Document Format
Description:
Journal Article
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: