AI-based Drought Forecasting for Parametric Insurance

dc.contributor.authorMathende, M.T.
dc.contributor.authorNdlovu, B.
dc.contributor.authorDube, S.
dc.contributor.authorMuduva, M.
dc.contributor.authorKiwa, F.J.
dc.date.accessioned2025-06-26T12:55:49Z
dc.date.available2025-06-26T12:55:49Z
dc.date.issued2024-05-07
dc.description.abstractIn drought-prone African countries like Zimbabwe, the uptake of parametric insurance has been low due to the absence of localized models. Guided by the CRISP-DM model, the present study proposes an AI-based approach to drought prediction in parametric insurance. The study’s paramount objectives are establishing trigger thresholds for drought events, assessing their significance, identifying the most effective machine learning models for drought modeling based on the Standardized Precipitation Index (SPI), and forecasting future drought occurrences and their magnitudes. Historical weather data, including temperature and rainfall, are utilized and a range of machine learning modelsneural networks, random forest, and support vector machines are employed for drought prediction. The performance of these models is evaluated based on accuracy, reliability, and interpretability, with continuous refinement based on feedback from stakeholders. The significance of this research lies in promoting data-driven decisions, incentivizing preparedness, enabling risk transfer, facilitating rapid insurance payouts, and enhancing financial stability. With accurate drought predictions driving parametric insurance, policyholders can make well-informed choices, adopt proactive measures, transfer the risk of drought-related losses, receive swift insurance payouts, and improve their financial resilience during drought events.
dc.identifier.citationMathende, M.T., Ndlovu, B., Dube, S., Muduva, M. and Kiwa, F.J., 2024. AI-based Drought Forecasting for Parametric Insurance.
dc.identifier.urihttp://196.220.97.103:4000/handle/123456789/877
dc.language.isoen
dc.publisherIEOM Society International, USA
dc.titleAI-based Drought Forecasting for Parametric Insurance
dc.typeWorking Paper
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AI_based_Drought_Forecasting_for_Paramet.pdf
Size:
368.74 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: